Understanding hydrostatic balance

Hydraulic Supermarket logo

Hydraulic components are unique in that it is often possible to offset or balance hydrostatic forces to reduce loads on lubricated surfaces. By reducing surface loading, the maintenance of full-film (hydrodynamic) lubrication is improved and therefore boundary lubrication conditions are less likely to occur.

Hydrostatic force is the product of pressure and area. Expressed mathematically: F = P x a. The balancing or offsetting of hydrostatic force is achieved by exposing opposing areas to the same pressure. The double-acting cylinder in Figure 1 illustrates this concept.

hydrostatic balance

Figure 1. Hydrostatically balanced cylinder loading two lubricated surfaces.

The rod-side area of the piston, area B, is 80% of area A. This means that the force exerted on the lubricated surfaces at the end of the cylinder rod is 20% of the force developed by the pressure acting on area A. This is due to the balancing or offsetting force developed by the same pressure acting on area B. Assuming the speed of the rotating surface (C) and fluid viscosity are adequate, full-film lubrication of the sliding surfaces is achieved.

hydrostatic balance

Figure 2. Typical cross-section of an axial design piston.

The same principle applied to a typical axial design piston is illustrated in Figure 2. Area A is exposed to system pressure during outlet (pump) or inlet (motor) and the force developed is transmitted to the lubricated surfaces of the slipper and swash plate. System pressure also acts on area B, the balancing area of the slipper, via the drilling through the center of the piston. Area C is the sliding (lubricated) area of the slipper. While the ratio of these three areas varies, in this particular piston, area B is 50% of area A, and area C is 140% of area A. This means that the force transmitted to area C is half that developed by area A and is spread over 1.4 times the area, further reducing the load on the lubricated surfaces.

hydrostatic balance

Figure 3. Loss of hydrostatic balance increases load on the lubricated surfaces.

If the hydrostatic balancing force is lost, that is there is no pressuring acting on area B (Figure 3), the force exerted on the lubricated surfaces at the end of the cylinder rod will be 100% of the force developed by the pressure acting on area A. If full-film lubrication was dependent on the hydrostatic balance of the cylinder, boundary lubrication conditions will eventuate and two body abrasion is likely. To learn more about the construction of hydraulic components, their modes of failure and how to prevent them, read Preventing Hydraulic Failures.

Related articles:

The anatomy of a hydraulic pump failure
A serious consequence of over-pressurizing your hydraulic system
Pressure intensification in hydraulic cylinders

If you enjoyed this article, you'll love Brendan Casey's Inside Hydraulics newsletter. It gives you real-life, how-to-do-it, nuts-and-bolts, hydraulics know-how -- information you can use today. Here's what a few members have said about it:

Can't Put It Down
?I get e-mails like this all the time. I never find time to read them. I decided to read Issue #30 and I couldn't put it down. I'll make time from now on.?

Richard A. Shade, CFPS, Project Engineer (Hydraulic Design), JLG Industries Inc.

So Valuable It Earned Me A Raise
?The knowledge I've gained from this newsletter has been so valuable it has earned me a raise!?

Jack Bergstrom, Heavy Equipment Mechanic, Sharpe Equipment Inc.

Love It - Keep Them Coming
?I just love this newsletter. As a Hydraulics Instructor for Eaton, I make copies and distribute them to my students as I address various topics. Please keep 'em coming.?

Michael S Lawrence, Hydraulics Instructor, Eaton Hydraulics Inc.

To get your FREE subscription ($149 value), simply type your first name and primary email address into the form below and hit 'SUBSCRIBE NOW!'

YES, I want to improve my hydraulics knowledge!

This is a private mailing list that will NEVER be shared for any reason.
You can also unsubscribe at anytime.

Home Page

Copyright © 2000 - 2013 Brendan Casey; HydraulicSupermarket.com